

## INFLUENCE OF DENSITY-DEPENDENT COUPLING CONSTANTS, ON SYMMETRY ENERGY OF NUCLEAR MATTER

Xian-Mei Ye, Hua-Ju Lee & Wei Chen

Department of Physics, Jinan University, Guangzhou, China

## **ABSTRACT**

In the mean field approximation of nonlinear relativistic  $\sigma - \omega - \rho$  model, we study the influence of the density-dependent coupling constants, between nucleons and mesons on the symmetry energy  $S(\rho_B)$  of infinite nuclear matter, in four different density-dependent formalism. We find greater  $\Gamma_{\rho}$  leads to greater  $K_{sym}$  and L when  $\Gamma_{\sigma,\omega}$ , c and d are fixed and indicate larger  $S(\rho_B)$  in high density region. In addition, the density dependence of  $\Gamma_{\sigma,\omega,\rho}$  make  $S(\rho_B)$  smaller in high density region, and they make  $K_{sym}$  and L more sensitive to the changing of parameters at different density.

**KEYWORDS:** Nuclear Matter, Density-Dependent Coupling Constants, Symmetry Energy

CLC number: 057

## Article History

Received: 10 Nov 2017 | Revised: 16 Dec 2017 | Accepted: 04 Jan 2018